

CORRECTION OF MAIN RING QUADRUPOLE POSITIONS USING CLOSED ORBIT INFORMATION

G. McD. Bingham

January 5, 1970

Abstract

The computer program OTRIM is described and results are presented for some simple cases. The program calculates corrections to be applied to the transverse positions of the Main Ring quadrupoles. The input data consists of a set of measurements of the transverse position of the closed orbit relative to the quadrupoles -- the beam sensor readings. program assumes one beam sensor for each transverse direction at each Main Ring station i.e. \(^{\text{o}}\) one beam sensor for each transverse direction per quadrupole. An arbitrary beam sensor configuration may be introduced simply by specifying, in the input data, the numbers of the beam sensors of the basic configuration which are inoperative. The results of some simple misalignment cases indicate that, in principle, OTRIM can reduce the closed orbit deviation by factors \sim 10 8 when all beam sensors are operative. With 10% of the beam sensors inoperative, the maximum reduction factor ranges from ~ 20-40 (inoperative beam sensors arbitrarily distributed) to <2 (inoperative beam sensors are consecutive). The case in which there are beam sensors at only the F quadrupoles in a given plane was also considered in order to obtain an indication of the loss of correction power in the event that it was desired to halve

the system cost. The results for this case indicate a maximum correction factor $\sim 20\text{--}40$. While this factor is probably adequate, it must be noted that, in actual practice, it will be further reduced by inoperative beam sensors, by errors in the beam sensor readings and the position corrections applied to the quadrupoles, and perhaps by non-linear effects. Thus it is rather doubtful if the halved system would be adequate in actual practice.

Introduction

The position of the closed orbit with respect to the beam elements of a synchrotron is determined by the magnetic fields and the positions of the beam elements. In this report we will show how errors in the positioning of the beam elements may be reduced by knowledge of the closed orbit position at a number of points around the accelerator -- the beam sensor readings. Since there are more beam elements than beam sensors in the present case, we cannot hope to uniquely remove a given position error.

The Main Ring of the NAL 200 GeV accelerator has six superperiods and uses a separated function lattice. The most critical alignment requirements are for the transverse (horizontal, i.e. radial; vertical) location of the quadrupoles. Thus the errors in the transverse location of the quadrupoles are the only beam element position errors that we consider. Laslett has calculated that the quadrupoles must be located with an accuracy of .01 in. in these directions for a 75%

probability that the corresponding closed orbit deviation is contained within a width of 1 in.

The positioning of the quadrupoles may be considered to be achieved in three steps -

- (a) Construction survey in which the quadrupoles are located using the station markers 2 which were placed to an accuracy $^{\circ}$ 1/16 in. during construction.
- (b) Refined survey using precise levels, tapes and an alignment laser. The wire alignment system described in the NAL Design Report has recently been discarded. The refined survey will probably be done one lattice cell at a time. Its accuracy should be such as to achieve a circulating beam.
- (c) Final positioning of the quadrupoles using the beam sensor readings as described in this report. This same correction scheme may be used to relocate the quadrupoles if the closed orbit happened to move during the life of the accelerator.

Theory

In Figure 1 is shown the arrangement for the first of the six superperiods of the Main Ring. There are 14 standard cells (C) a half cell (DF), a medium straight cell (CM) and a one half cell replacement containing the long straight section (FLD). The parameters for all of these cells are taken from the report by Garren³. Small changes to the FLD section were made by Bellendir and Teng⁴ during the progress of this work. They have not been included.

The following notation is used in reference to the complete Main Ring - B(I), I = 1,210 - the beam sensors which measure the closed orbit displacement relative to the appropriate beam element. This information is then used to correct the quadrupole positions. It is assumed that a beam sensor is located at each station marker, including the one at the center of the long straight section.

Y(I), I=1,210 - the spy station beam sensors. This information is not used to correct the quadrupole positions. Its sole use is to enable us to investigate the remaining closed orbit deviations at points intermediate to the B(I) after the quadrupole positions have been corrected. In the present case the spy stations are somewhat academic as we would not expect their readings to differ significantly from those of the beam sensors B(I) because of the small separation between B(I) and Y(I).

H(I), I=1,222 - the transverse displacement of the Ith beam element. From Figure 1 we note that the I=2,3,36,37, etc., elements are quadrupole doublets whereas the remaining elements are singlets. The main reason for this choice of beam elements is to obtain a program which does not exceed the available space in present large computers (CDC 6600, IBM 360/75). Because of the small separation between members of the above doublets, the assumption of no relative displacement of the members is probably quite accurate. Notice also from Figure 1 that there is no quadrupole associated with H(I), H(38) etc.

In this report we use the correction scheme which has been described by Laslett and Lambertson 5 . We define the matrix S with the equation

$$B = S H \tag{1}$$

where B and H are given by

$$B = \begin{bmatrix} B(1) \\ B(2) \\ \vdots \\ B(NB) \end{bmatrix}$$

i.e. column matrix of beam sensor readings, NB = 210 here

$$H = \begin{pmatrix} H(1) \\ H(2) \\ \vdots \\ H(NH) \end{pmatrix}$$

i.e. column matrix of displacement of accelerator components.

NH = 222 here

We assume that the horizontal plane motion is not coupled to that of the vertical plane. Thus the two directions are computed independently and each has its own S matrix. The S matrices are computed by the program SYNCH⁶ and the details of this computation are given in Appendix 1. For the combined function machine that they considered, Laslett and Lambertson found it convenient to displace the beam elements in gangs rather than individually. Thus if G is the ganging matrix for the gang scheme chosen, we have

$$B = TH (2)$$

where T = SG. Although we only consider individual displacements (G = 1), our calculations are set up so that any desired G matrix may be introduced.

In practice we will be faced with the situation where the B matrix is given by a set of beam sensor readings and we wish to find the set of displacement corrections H_C which are to be applied in order to give a zero B matrix. Ideally we would invert (2) and obtain

$$H_{C} = -H = -T^{-1} B \tag{3}$$

In general T is not square and so the above step is not possible. Furthermore, it is not possible even when T is a square matrix because B contains only relative beam displacements and thus a unique $H_{\rm C}$ does not exist, i.e. T has a zero value determinant. Thus it is necessary to use a different approach from that of Eqn. (3). From Eqn. (2) we have

$$\overline{B} T = \overline{H} \overline{T} T \tag{4}$$

where \overline{B} is the transpose of B, etc. Laslett and Lambertson show that Eqn. (4) also results if one fits the beam sensor readings by least squares. We define the matrix M by

$$M = \overline{T} T$$
 (5)

Thus M is a symmetric matrix with either zero or positive eigenvalues. If the Kth eigenvalue and normalized eigenvector are respectively λ^K and V^K we have

$$MV^{K} = \lambda^{K} V^{K}$$
 (6)

We then expand H in terms of the V^{L}

$$H = \Sigma_{L} A_{L} V^{L}$$
 (7)

By multiplying Eqn. (4) by V^{K} from the right and using Eqns. (5), (6), (7) we obtain

TM-200 0402

$$A_{K} = \frac{\overline{B} T V^{K}}{\lambda^{K}}$$
 (8)

Next we define the Q matrix from

$$\overline{H}_{C} = -\overline{H} = \overline{B} Q \tag{9}$$

Thus from Eqns. (7), (8), (9) we have

$$Q = -\sum_{L} \frac{T V^{L} \overline{V}^{L}}{\lambda^{L}}$$
 (10)

Laslett and Lambertson also note that the sum of squares of the beam sensor readings is given by

$$\sum_{\mathbf{I}} \mathbf{B}^{2} \quad (\mathbf{I}) = \overline{\mathbf{B}} \mathbf{B} = \sum_{\mathbf{L}} \lambda^{\mathbf{L}} \mathbf{A}^{2}_{\mathbf{L}}$$
 (11)

i.e. the component of this sum due to the Lth eigenvector is proportional to $\lambda^{\rm L}$. Thus Eqn. (11) shows that the small eigenvalues and their eigenvectors can be dropped from the sum over L in Eqn. (10) (of course, the $\lambda=0$ ones must be dropped) and the result will not be greatly affected. This is the key point of the Laslett and Lambertson method. They found that dropping the small eigenvalue eigenvectors from the Q sum reduced the closed orbit deviation at points intermediate to the beam sensors in some cases. This effect should not be large in our case as we have \sim 1 beam sensor per quadrupole. They also found that the total amount of corrective displacement was significantly reduced as small eigenvalue eigenvectors were omitted. In practice we calculate several Q matrices and investigate the behavior of ${\rm H_C}$ as the number of omitted eigenvectors is varied.

Computer Program OTRIM

The computer program OTRIM performs the computation of the displacement corrections $H_{\mathbf{C}}$ to be applied to the quadrupoles from a given set of beam sensor readings B. The program uses two magnetic tapes. Tape 3 is the input tape (read only) containing the SYNCH output and obtained as set out in Appendix 1. Tape 4 is a scratch tape (both read and write).

The input data sets required are as shown at the top of Figure 2 and will be described here in detail -
First Set (1 card only) Format (1615). This is the program instruction card and contains, in order, the input values for the following variables:

- - = 1 run test case for which only non-zero displacement is H(2) = +1.0 and beam sensor
 readings are obtained by OTRIM from SYNCH
 output (Tape 3).

ISPY = 0 - skip spy stations

- = 1 calculate closed orbit displacement at spy stations after corrections H_{C} have been applied to beam elements. It is run only for test case, ITEST = 1.
- NHOR = 0 skip horizontal plane
 - = 1 run horizontal plane

NVERT = 0 - skip vertical plane

= 1 - run vertical plane

KAPUTH - the number of inoperative beam sensors for the horizontal plane.

KAPUTV - the number of inoperative beam sensors for the vertical plane.

NVCHEK = 0 - skip orthogonality test on eigenvectors of $\overline{T}T$.

= 1 - perform orthogonality test.

NHARM = 0 - skip the harmonic analysis of GV.

= 1 - perform the harmonic analysis of GV.

This number must be sufficiently small to allow them to be written on the scratch tape (Tape 4). Using NNNQ = 6 requires that Tape 4 be 2400 feet with density 800 b.p.i. This resulted in frequent parity errors so we have usually taken NNNQ = 5 and 556 b.p.i.

TM-200

Fourth Set Format (8F10.4) BS(J), J=1, NB. The beam sensor readings for the horizontal plane. The number fields of inoperative beam sensors remain blank. For test case runs (ITEST=1) no BS(J) data set is required as OTRIM obtains the appropriate data from the SYNCH output.

Fifth Set Format (1615) KAP(J), J=1, KAPUTV

Sixth Set Format (1615) NQ(J), J=1, NNNQ

Seventh Set Format (8F10.4) BS(J), J=1, NB

vertical plane data

When both horizontal and vertical planes are to be computed, the order of the input data must be as above. If only one plane is to be computed, the input data consists of the instruction card and the three sets corresponding to that plane.

A listing of OTRIM is contained in Appendix 2 of this report. The operation of the program is outlined by the flow diagram in Figure 2. The program begins by reading into the columns of a matrix SY either the horizontal plane or the vertical plane SYNCH output, according to the instruction card. The SYNCH output gives the absolute displacements of the closed orbit for the sequential displacement of the first superperiod quadrupoles by 1 unit. The SYNCH displacement sequence is shown in Figure 1. We require the displacement of the closed orbit relative to the beam elements - i.e. the beam sensor readings. Also we must include matrix elements corresponding to the beam sensors at the center of the long straight sections. Thus OTRIM sets up the required S matrix

TM-200

as follows -

$$S(1,1) = -1.$$

$$S(I,1) = 0.$$

$$I = 2, NB$$

$$S(I,J) = SY(I,J-1)$$

$$S(I,J) = SY(I,J-1) - 0.5$$

$$I = 1, NB \text{ but } I \neq 2.$$

$$I = 2, 3$$

$$I$$

Eqn. (12) gives the elements corresponding to the beam sensor at the center of the long straight section. In Eqn. (13) it has been assumed that the displacement of beam sensor B(2) is given by 1/2 (H(2) + H(3)). A similar assumption is made for B(35) in Eqn. (15). The remaining beam sensors are assumed to be fixed to the adjacent quadrupoles - Eqn. (14). Eqns. (12), (13), (14), (15) set up 1/6 of the S matrix. The remaining 5/6 of this matrix is obtained by cyclic symmetry

with N an integer. The indices I and J are modulo NB and NH respectively.

 $S(I+\frac{N}{6} \times NB, J+\frac{N}{6} \times NH) = S(I,J)$

OTRIM next proceeds to calculate the matrix T=SG. We have simply used G=l in this work, but any desired ganging matrix may be introduced at this point. Since we measure only relative displacement of the closed orbit, the displacement of all beam elements uniformly by l unit (horizontally or vertically) should produce no change in the closed orbit.

Thus the program checks for zero sum of the elements of each row of the T matrix. In fact the sums for the vertical direction may be $^{\circ}$ 1 x 10^{-2} due to slight vertical focussing at the entrance and exit planes of the bending magnets.

The inoperative beam sensors KAP(J) are allowed as the next step in the computation. The corresponding rows are dropped from the T matrix and the resulting reduced matrix is the R matrix. The matrix $M = \overline{R}R$ is then computed. KAP(I), T and M are all stored on the scratch tape for subsequent use.

The non-zero eigenvalues and their associated eigenvectors are computed and arranged in descending order by the subroutine EIGEN for the matrix M. If NR is the number of rows in R and NR < NH (the present case) then the number of non-zero eigenvalues is NR. Thus the arguments of EIGEN are set up so as to compute for the NR largest eigenvalues. If we had a case where NR = NH, then the last of the NR eigenvalues computed would be zero (see below Eqn. 3). Thus for the NR = NH case the minimum value for NQ (NNNQ) is 1.

If NVCHEK = 1, then subroutine VCHEK checks that the eigenvectors of M are orthonormal using the equations

$$\overline{V}^{I} M V^{J} = \lambda^{J} \qquad I = J$$

$$= 0 \qquad I \neq J$$
(17)

The subroutine assigns a limit of $(10^{-10} + 2 \times 10^{-8} \lambda^{\rm J})$ to the difference between left and right sides of Eqn. (17). Typically \sim 10% of the smaller eigenvectors fall outside this limit by \sim 10⁻⁹ and this is considered quite satisfactory.

If NHARM = 1, subroutine HAR will perform the harmonic analysis of GV^L . For each non-zero eigenvector, OTRIM lists the four largest amplitudes and their frequencies. In the present case the harmonic analysis is unreliable and should be omitted because it assumes equal argument increments whereas in fact the H(I) are spaced as shown in Figure 1. The harmonic behavior of the Main Ring is best understood by studying its harmonic response as shown in Appendix 3.

OTRIM is now ready to compute the NNNQ Q matrices which involve the omission or various numbers NQ of small eigenvalue eigenvectors. For reasons of computer economy the program calculates one column of all NNNQ Q matrices and stores these NNNQ columns as a record on Tape 4. It then proceeds to the next column of all Q matrices, and so on, until all NNNQ Q matrices are complete.

Each Q matrix is then read back from Tape 4 and the program computes the recommended displacement corrections HQ (equivalent to $H_{\rm C}$) from Eqn. (9) and the total correction motion HQTOT.

$$HQTOT = \Sigma | HQ |$$
 (18)

For the test case the residual beam sensor readings BE are computed

$$BE = T (H+HQ)$$
 (19)

Also for the test case the subroutine NUMBER computes the maximum beam sensor reading, the r.m.s. beam sensor reading and the r.m.s. value of the local maxima of beam sensor

reading. These parameters are computed both before and after application of HQ so that the improvement may be noted.

If ISPY = 1 and the test case is being run, OTRIM will proceed to compute, for each Q matrix, the residual displacement of the closed orbit relative to the beam elements at the spy stations, i.e. the residual beam sensor readings at the spy stations, BSP. Referring to Eqn. (1), we now have B replaced by Y and it is necessary to set up the corresponding spy S matrix. It is assumed that the spy station sensors are fixed to the adjacent quadrupoles. Thus the procedure is similar to that in Eqns. (12)-(15) except that in the present case there is no beam sensor whose motion is determined by the motion of two quadrupoles as in Eqns. (13) and (15). Also the spy S matrix is set up directly in the SY array into which the spy SYNCH data has been read (beginning in column 2) as the S array of OTRIM contains data which is required later. Thus the equations are

SY
$$(I,J) = 0$$
. $I = 1$, NB. $J = 1$
SY $(I,J) = SY(I,J)-1$. $I = 1$, $J = 2$
SY $(I,J) = SY(I,J)-1$. $I = J-2$, $J = 4,37$ (20)

All other elements in the first 1/6 of SY will be correct as read in. The remaining 5/6 of the matrix is obtained by cyclic symmetry and then the BSP values are computed.

OTRIM has now completed the computation for the plane in which it started. If this plane was the horizontal plane and NVERT = 1, then it returns to compute for the vertical plane. Otherwise, the computation is complete and the program ends.

Results

(a) No inoperative beam sensors, NKAPUT = 0

In Figure 3 we have plotted the displacement in both planes of the accelerator components before and after correction for the test case H(2) = +1.0. Only the components near H(2) are shown for two Q matrices (NQ=0 and NQ=108) which correspond to the omission of 0 and 108 non-zero small eigenvalue eigenvectors. As NQ is reduced, the maximum residual error is reduced and the accelerator components are placed on a smooth bump relative to the undisplaced positions. At most, the bump extends over \sim one superperiod near the displaced element. The remainder of the accelerator is unchanged.

Figure 4 shows the variation in both planes of maximum beam sensor reading after correction, as NQ is changed. The initial displacements are also shown. The general trend is for a reduced residual beam sensor reading as NQ is reduced. For NQ = 0, the residual beam sensor readings are only $\sim 10^{-8}$. Even when NQ = 108 (i.e. slightly more than half the eigenvectors are omitted) it is still possible to reduce the closed orbit deviation by a factor ~ 10 . The variation of HQTOT with NQ is shown in Figure 5. It is seen that HQTOT may increase by a factor $\sim 2-3$ as NQ is reduced over the range shown.

As will be discussed later (Appendix 3) it is important that OTRIM is able to correct 20th harmonic (integer closest to ν) disturbances. Figures 6, 7, and 8 show the results when

the 20th harmonic disturbance extended $^{\circ}$ 1 wavelength. As NQ is reduced the beam elements are moved from their disturbed positions on to a small smooth bulge. Residual beam sensor readings $^{\circ}$ 10⁻⁸ are theoretically possible in this case also. In Figure 8 we see that HQTOT tends to oscillate about the initial sum, first increasing and then decreasing as HQ is reduced.

Figures 9 and 10 present results for a disturbance of \sim 1 wavelength of 40th harmonic. They indicate that smaller (factor 2-4) residual beam sensor readings are possible, but otherwise are similar to 20th harmonic case.

(b) 96 inoperative beam sensors, NKAPUT = 96

This case is interesting because it indicates whether we can hope to obtain sufficient information by placing beam sensors for a given plane at only the <u>focussing</u> quadrupoles for that plane, i.e. where the beam width function is a maximum. Such a scheme would represent a large financial saving. It is in contrast to (a) above where each beam sensor actually consists of a pair, one for the horizontal plane and one for the vertical plane. In the present case we have assumed that both horizontal plane and vertical plane beam sensors exist at B1, B2, B35, B36, B37, etc. Otherwise beam sensors exist only at QF quadrupoles in the plane of interest.

The results have been plotted in Figures 11 and 12 for the test case H(2) = +1.0. It is seen that the reduction in

closed orbit deviation is now only ∿factor 20-40 in the most favorable case. Also the trend as NO is varied is not monatonic for small values of NQ. Thus it may be necessary to choose somewhat larger NQ values (and consequently a smaller reduction of closed orbit deviation) in an actual case. It is seen from Figure 12 that HQTOT tends to decrease slightly as NQ is reduced to small values ∿ 10. For further reduction of NQ HQTOT may increase slightly in some cases.

(c) 21 inoperative beam sensors, NKAPUT = 21

In this case we have returned to case (a) and imagined that 10% of the beam sensors are inoperative. This is an attempt to represent an actual situation since at any given time there will probably exist some inoperative beam sensors - say 10%. We chose 21 inoperative beam sensors in an arbitrary way and the results are plotted in Figures 13 and 14. It is seen that both the maximum residual beam sensor reading and HQTOT are rather slowly varying with NQ. The maximum reduction in closed orbit deviation is ~ factor 40 now and so the correction is much poorer than in the case (a).

Also shown in Figures 13 and 14 is the case 21 consecutive inoperative beam sensors for the horizontal plane. As might be expected, this is a severe loss of information and OTRIM is only able to reduce the closed orbit deviation by \sim 20%. Discussion

Although we have considered only a few misalignment examples, these examples are important as Lambertson and Laslett

found that the single misaligned quadrupole case was the most difficult to correct. Also the 20th harmonic is expected to be the most important misalignment harmonic (Appendix 3). In the present accelerator, these misalignments can be largely corrected by OTRIM even when a significant fraction of the beam sensors are inoperative. This difference in behavior is probably due to the fact that with the present separated function machine there is $^{\circ}$ 1 beam sensor per focussing magnet whereas with the combined function machine of Lambertson and Laslett there was only \circ 1 beam sensor per 7 focussing magnets. For the same reason, in the present case the spy stations do not show residual deviations that are much different from the residual deviations at the beam sensors. Also in our work there does not appear to be excessive total component displacement HQTOT as NQ is reduced. The residual beam sensor error is usually much smaller as NQ is reduced. Although it would be desirable to consider more misalignment examples, at present there appears to be no reason for not choosing NQ=0.

The question of whether it is sufficient to use beam sensors at only the QF quadrupoles of a given plane requires some further study before a definite answer may be given. The present work indicates that the closed orbit can still be corrected by a factor \sim 20-40, which would probably be adequate. However, it must be noted that the above correction factor will be reduced when allowance is made for --

1. Inoperative beam sensors

- 2. Errors in beam sensor readings
- 3. Errors in position corrections applied to beam elements
- 4. Non-linear effects (if there are any?)

Thus it appears rather doubtful that it will be adequate to use beam sensors at only the QF quadrupoles. While such an arrangement may <u>halve</u> the cost of the beam sensor system, it reduces the maximum possible closed orbit correction by orders of magnitude.

Acknowledgements

We are indebted to A.A. Garren, G.R. Lambertson and L. Jackson Laslett for discussions of this work and assistance with the programs. Burton S. Garbow was most helpful in the eigenvalue - eigenvector computations. Most of the computer runs were made remotely at N.Y.U. and we wish to acknowledge the assistance of the N.A.L. Computer Center staff, especially Miss A. Georgoulakis.

References

- 1. N.A.L. Design Report, p5-20, January, 1968.

 The estimate is contained in a letter from Dr. Laslett to Dr. Wilson, dated December 21, 1967. It was obtained for the horizontal direction and assumed that the quadrupoles were located horizontally by making offset measurements relative to a polygon of 200 sides. Only the errors in the offset measurements were considered. The estimate then follows from a formula derived by L. Jackson Laslett and Lloyd Smith in UCID-10161, p 17. The same estimate applies for the vertical direction if we assume that, in the vertical direction also, the displacement errors of individual quadrupoles are uncorrected.
- 2. T.L. Collins, TS-2, 1968.
- 3. A.A. Garren, FN-182 0400 March 12, 1969.
- 4. J. Bellendir and L.C. Teng, FN-189 0420 May 21, 1969.
- 5. G.R. Lambertson and L. Jackson Laslett, Proceedings, V International Conference on High Energy Accelerators, Frascati, 1965 (C.N.E.N., Rome, 1966) pp. 26-33. Also same authors, Proceedings of VI International Conference on High Energy Accelerators, Cambridge, 1967. pp. 226-227.
- 6. A.A. Garren and J.W. Eusebio, SYNCH, A Computer System for Synchrotron Design and Orbit Analysis, Lawrence Radiation Laboratory Report UCID-10153, April 10, 1965.
- 7. Burton S. Garbow, ANL F202S, System/360 Library Subroutine,

TM-200 0402

Applied Mathematics Division, Argonne National Laboratory, December, 1967; Revised, June 1968. The subroutine is set up for easy conversion to CDC 6600 use.

L. Jackson Laslett, AS/Accelerator Systems/03, July 14,
 1965 and September 20, 1966.

Appendix 1 SYNCH Input Data

The lattice used is that described by Garren³. The input is set up for the system of beam sensors and spy stations shown in Figure 1. The elements of the first superperiod are displaced 1 unit in sequence. For each of these displacements SYNCH calculates the position of the closed orbit, in addition to other parameters, at all beam sensors and spy stations around the accelerator. The output which is written on the output Tape 5 under the format (A5, 2I3, 5F14.8) is as follows -

Name of Matrix (RING in our case)

Number of the beam sensor or spy staion, n. (1-420)

Total number of beam sensors and spy stations (420)

Distance from beginning to n

Closed orbit position, horizontal plane, at n

Closed orbit position, vertical plane, at n

Vertical beta function at n

Horizontal beta function at n

The desired SY matrix is then obtained by using appropriate read formats in OTRIM. In the case we have considered, Tape 5 was 2400 ft. long and 556 b.p.i.

```
111
                                             NINI
                                                                                                                                                                                                                                                                                                                 CO.
                014
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   05x+00+xs0
0F QJADS. LATTICE IS 1959 REV. 2/14/55

5 ARE 98.5FT FAJM CENTRE LSS. AZL+AZ3=A

[441N.-QFE] JWNSTRW GFL. LIGHLBELL

ONS DNSTREAM QUAD ENTRANCE FROM SENSOR

OFL, JFL), (2DL, 2D), (QF, 2FL), (QDL, QDL)

OFL, JFL), (2DL, QDL, QDL)

OFL, JFL), (QDL, QDL)

OFL, JFL)

OFL,
                     SONII
                                                                                                                                           in-
                          >-m
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     __
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  <u>ب</u>
ننا
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                DD)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     ~~
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      ( )
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           >
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  T
Vď
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      VDRV
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             *1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 TOMMAHAMXH
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   QUAD,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             S
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  0~
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  FROM
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           XXXXX • •
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                ~O
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                SILLO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                للا المسالكا
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     •്മറ്റ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             TXI
VA
TXI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      S
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     ANA
             IO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  OZWZ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          \circ
          2 1 2 1 S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S T S S 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      SJR
                                                                                                                                                                                                                                      -40
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  WA IL
                                                                                                                                                                                                                                              S OF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              TAHBHHHH 0000.
                                                                                                                                                                                                                                                                                                                                                                                  MAKHAAAA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      \frac{1}{2}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                LEW
        DISPLACEME
B. SENSORS
                                                                                                                                                                                                                            ARE
QUADS
STR. C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       44mm
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  in
                                                                                                                                                                                                                                                                                                                                                                          BENDING MINI STRAMINI STRAMINI STRAMEDING ST
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      \infty \omega
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                WW. W
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  40
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  1 ~~
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                ∩d. 4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            common we
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   (4)144
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                M CCC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 S
                                                                                                                                                                                                                                      JNITS
CELL
LONG
```

œ.

**

CONOCOSSERVATIONS

CLE * T X800000X

CLE * T X80000X

CLE * T X8000X

CLE * T X800X

COR MIS

	P 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	z'×
	P222
	××
	ე გგე გე
	×K
3 R B B	P P 5 € 4
	××
40 0 240 40 40 10 11 14 14 10 10 11 14 14 10 11 11 11 11 11 11 11 11 11 11 11 11	P P P P P P P P P P P P P P P P P P P
34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	13 13
SPECCOOP SPE	95. 1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+× ×⊣
amia ilonivenkaa komamaa	(24
; >CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	N N N N N N N N N N N N N N N N N N N
XECHHEHHEHHENNNNNNNNNNNNNNTETEETTTTEETTTTTTTT	00 KING

```
P3802
                         P28
P49
P52
P64
                                 XL
                                         P35
P42
                                                          P32
P44
P58
P68
ΧL
                ΧL
                                                 XL
                                                                          P34
P46
                                                                                  ХL
                                                                  ΧĹ
                                                                                   ΧĽ
                                                                          P58
T70
XL
                XL
                                 XXXXXX
                                         P54
                                                 ХL
                                                                  XL
                                                                                   ΧL
ХL
                                         P66
                                                 T67
                                                                  PE9
                XL
                                                                                  Ti
                                                          FFFFFF
                         FX
TB
        74
                ХL
                                         XC
                                                 XL
                                                                  ХL
                                                                           ЭX
                                                                                   XL
                                         DX
                                                                  ΧĹ
                                                                          ĎΧ
Lis
        DΧ
                XL
                                                 ХL
                                                                                   ΧĒ
                         FΧ
XL
        DX
                ХĹ
                                                 XL
                                         XC
                                                                                  XL
                                                                  ΧL
                                                                          ÐΧ
XL
        \mathbb{D}X
                ХL
                         FX
                                         DX
                                                 XL
                                                                  ΧŪ
                                                                           ĴΧ
                                 XE
T67
                                                                  XL
TI
XL
XL
        DX
                         FΧ
                                                                          DX
                                                                                  ΧĹ
                XL
                                         DX
                                                 ХL
ХĒ
        DX
                ХŪ
                         T 5 6
                                         T68
                                                 T69
                                                                          T 2
                                                                                   T3
ΧĽ
        ĚΧ
                XL
                                 XL
XL
                                         ĒΧ
                                                          DX
DX
DX
                                                                          FX
                                                                                   Ť15
                         DX
                                                 XL
                                                                  ΧĽ
        FΧ
                XL
                                         FX
                                                 ΧĹ
                         DX
                                                                                   ΧĒ
XL
                                         FΧ
        FΧ
                XL
                         DX
                                                 XL
                                                                          FX
                                                                                   ХL
                                 XE
XL
T69
                                                                  XL
XL
T3
                                                                          FX
XL
                                                                                  XL
        FΧ
                ХL
                         ĐΧ
                                         FΧ
                                                 XL
                                                          DX
                                         FX
T7.
                XL
T67
                                                          ĎΧ
XL
        FΧ
                         DX
                                                 XL
                        Ĭ68
                                                                                  ΧĽ
XL
        T55
                                                 Ti
                                                                          T4
                                                          TEXXXXXX4
                        ĒΧ
                                 XL
                                                                  Ť15
XL
        DX.
                XL
                                          ХC
                                                 ΧĹ
                                                                          ĎΧ
XL
        DX
                         FΧ
                                                                  XL
XL
                                                                                  XL
                XL
                                 XXXXXXX
                                         ЭX
                                                 XL
                                                                          DX
                        FX
FX
                                                 ΧĽ
                                                                          ĎΧ
        DX
                ΧĹ
                                         ĐΧ
XL
                ΧĹ
XL
        DX
                                         ЭX
                                                                          \mathsf{X}\mathsf{C}
                XL
T69
                        FX
T7∋
                                                 XL
T3
T15
XL
                                                                  XL
                                                                          DX
FX
        DX
                                                                                  ΧĒ
ХL
                                         DX
                                         TZ
FX
T57
        T 68
                                                                                   XL
        FX
                        ĎΧ
                                                                  XXXXXX
ХL
                                                          DX
DX
                                                                          FX
                                                                                  ΧĽ
                XL
                                         FΧ
XL
                ΧĒ
                         DX
                                 XL
                                                          DX
DX
                ΧĹ
                                         FΧ
XL
        FΧ
                         DX
                                                 ХL
                                                                          FX
                                                                                   ХL
                                                                                  XĽ
T57
        Fχ
                ΧĒ
                                         FX
XL
                         DX
                                                 XL
                                                         DX
FX
FX
FX
FX
FX
FX
        ĒΧ
T7.
                XL
Ti
                        DX
FX
FX
FX
                                 XĽ
T3
T↓5
                                                                          T65
ХL
                                         FΧ
                                                 XL
                                         Ť4
Tos
                                                 ХL
                                                                  ΧĹ
                                                                          DΧ
                                                                                  ХL
ХL
                                         DΧ
                                                                                  XL
        DΧ
                ΧL
                                                 XL
                                                                  ХL
                                                                          DX
                                 XLXL
                                                                  ΧĽ
                                          ΣX
XL
        DX
                XL
                                                 XL
                                                                          DX
                                                                                  XL
                ΧĽ
XL
        DX
                                         DX
                                                 XĽ
                                                                           XC
                                                                                   ХL
                        FX
ХL
                                         DX
                                                                  XL
T67
                                                                                   XL
T59
        DX
                                                 ХL
                                                                          ĎΧ
                                                                          T68
XL
        DX
                ΧĹ
                        FX
                                          DΧ
                                                 XL
RING
                                                 tape
                                       Write
DÜ
T23
D03
T3
$4
D0
T4
SF*
DÜ
FΧ
SD*
DU
DX
SF*
DO
FX
SD*
DU
\mathsf{D}\mathsf{X}
SF#
Dù
FX
SD*
DÜ
DX
```

CYB

END

EQU EQU

ČĂĽL EQU

EQU

EQU

ËQU

CALL

EQU CALL

ĒQŪ

ĒÔÜ

EQU

CALL

FOU

EQU

CALL

EQU

EQU

EQU

ČĂLL

CALL

CĂLL

SZ P3

P3

P4

P6

P6 P6

Pa

P.

P 1 2

P. 2 P14

P14 P16

P16

42.

P36 P48

PS) T2 FX

FX

ΕX

T4

DX

ĎΧ

DX

ĎΧ

DX FX FX

FΧ

FX

DX

DX

DX

DX

FΧ

FX

FX

FX T70

DX T58

T55

		CALL	Du	
р	53	ĔĠŨ	Du EX	
Þ	6.1	EQU	SD*	
·	.	ČÄLL	DO	
Ċ.	Ü	ĔQŪ	DX SF*	
P	62	ĒQŬ	SF*	
•		Γ Λ 1 1	DU FX SD*	
p	62	FOU	ĒΧ	
, , , , , , , , , , , , , , , , , , ,	64	FÖÜ	SD*	
,	0 1	CALL	ĎŪ	
р	64	E QU E QU E QU E QU	DX	
q	66	FQU	Šoš	
•		CALL	DO	
p	°£5	CALL EQU	To6	
	63	FOLL	\$63	
•		EOU CALL	ĎÐ	
p	63	ĔQŬ ĘQU	T63	
qi	P69	Ē QŪ	\$69	
		ČÄLL	Dù	
		CALL FIN		
		STOP		
EL	JF			

Appendix 2 OTRIM Listing

The program was kept on the CIMS tape at N.Y.U. in order to reduce the probability of transmission error. The corresponding control cards are shown above the listing of OTRIM and it is also shown where any desired changes to the program would be inserted. The reader should consult the CIMS User's Manual for explanation of how changes are made. The data cards shown are for a test case run (ITEST=1) including spy stations (ISPY=1) in the horizontal plane (NHOR=1) and with 5 Q matrices to be calculated (NNNQ=5). The numbers of small eigenvalue eigenvectors to be omitted are 108, 68, 28, 8, 0 respectively.

In order to demonstrate how an arbitrary misalignment may be introduced, we have shown, at the appropriate place in the listing, the changes required to run the 20th harmonic misalignment.

LDIM=223 NH = 222NB=210 NBS=NB/6 NHS=NH/6 NGC=NH NGR=NH NSR=NB NTR=NSR NTC=NGC NSC=NGR READ 3010, ITEST, ISPY, NHOR, NVERT, KAPUTH, KAPUTV, NVCHEK, NHARM, NNNQ 3510 FORMAT (1615) IF(NHOR.NE.1.AND.NVERT.NE.1) 3051.3052 3051 PRINT 3050 3050 FORMAT (34HOTRIM WAS NOT ASKED TO DO ANYTHING) CALL EXIT 3052 PRINT 3011.ITEST.ISPY.NHOR.NVERT.KAPUTH,KAPUTV,NVCHEK.NHARM.NNNO

```
3011 FORMAT [19HINSTRUCTION CARD***,6HITEST=,11,2X5HISPY=,11,2X5HNHOR=,11,2X 6HNVERT=,11,2X7HKAPUTH=,13,2X7HKAPUTV=,13,2X7HNVCHEK=,11,2X
      26HNHARM=, II, 2X5HNNNQ=, II)
 3020 CONTINUE
       REWIND 3
       REWIND 4
       IF (NHOR, EQ.1) GO TO 3030
       IF(NVERT.EQ.1) GO TO 3040
 CALL EXIT
3030 PRINT 3060
3060 FORMAT (1H1/,47H
                                          ORBIT ANALYSIS IN HORIZONTAL PLANE//)
       KAPUT=KAPUTH
       GO TO 3070
 3040 PRINT 3080
3080 FORMAT (1H1/,45H
                                          ORBIT ANALYSIS IN VERTICAL PLANE//)
       KAPUT=KAPUTV
 3070 CONTINUE
       DO 3090 J=1,36
       DO 3090 I=1,NB
       IF (NHOR.EQ.I) GO TO 3100
READ (3.3120) MN.IPOS.KKK.EL.BETX5.SY(I.J).BETX7.BETY7
       GO TO 3090
 3100 READ (3,3120) MN, IPOS, KKK, EL, SY(I, J), BETY5, BETX7, BETY7
 3120 FORMAT (A5,213,5F14.8)
3090 READ (3,3120) MN, IPOS, KKK, EL, BETX5, BETY5, BETX7, BETY7
       READ (3,3120) EOF
       IF (EOF,3) 3130,3131
 3131 PRINT 3140
3145 FORMAT (21HDO NOT FIND SYNCH FOF)
       CALL EXIT
 3130 CONTINUE
 6700 FORMAT (1X10(1XF9.5))
       NELAG=1
3078 FORMAT(1X212)
C EXPAND SY MATRIX AND SUBTRACT OUT BEAM SENSOR DISPLACEMENT TO GET
C DISP. OF BEAM RELATIVE TO B.SENSORS.
       S(1,1)=-1.
       DO 1204 I=2,NSR
 1234 S(I,1)=0.

DO 1207 I=1,NSR

DO 1207 J=2.3
       IF (I.EQ.2) GO TO 1208
       S(1,J) = SY(1,(J-1))
       GO TO 1207
 1238 S(I,J) = SY(I,(J-1)) - 0.5
 1207 CONTINUE
       DO 1211 I=1,NSR
DO 1211 J=4,35
       IF [I.EQ.(J-1)) GO TO 1216
       S(I,J)=SY(I,(J-1))
       GO TO 1211
 1210 Š(I,J)=ŠŶ(I,(J-1))-1.
1211 CONTINUE
       DO 1215 I=1,NSR
DO 1215 J=36,37
       ĬĔ (Ĭ.ÉQ.35) ĞÖ TO 1214
       S(I,J)=SY(I,(J-I))
       GO TO 1215
 1214 Š(I,J)=ŠŶ(I,(J-1))-0.5
1215 CONTINUE
C GENERATE REMAINING 5/6 DF S MATRIX
```

```
NSCS=NSC/6
      NSRS=NSR/6
      DO 1021 J=1,NSCS
DO 1021 I=1,NSR
DO 1021 N=1,5
 IF (I+N*NSRS-NSR) 1023,1023,1024
1023 S(I+N*NSRS,J+N*NSCS)=S(I,J)
 GO TO 1021
1024 S(I+N*NSRS-NSR,J+N*NSCS)=S(I,J)
 1021 CONTINUE
1029 FORMAT (3(2F14.8,5X))
C CONSTRUCT GANGING MATRIX G.EXAMPLE TRIVIAL CASE G=1.

DO 1050 J=1.NGC
      DO 1050 I=1.NGR
       IF (J.EQ.I) GO TO 1051
      G(I,J) = 0.
      GO TO 1050
 1951 G(I,J)=1.
1050 CONTINUE
C CALCULATES T=S*G BY ROWS AND STORE IN T (EQUIV S) ROWS
DD 1058 I=1.NSR
      DO 1057 J=1.NGC
      TEM(J)=0.
 DO 1057 K=1,NSC
1057 TEM(J)=TEM(J)+S(I,K)*G(K,J)
      DO 1059 L=1.NGC
 1059 T(I,L)=TEM(L)
 1058 CONTINUE
C CHECK ZERO SUM OF ELEMENTS OF EACH ROW OF T MATRIX
      DO 1085 I=1.NTR
      TEM(I)=y.
      DO 1085 J=1.NTC
 1085 TEM(1)=TEM(1)+T(1.J)
       PRINT 6700, (TEM(I), I=1, NTR)
                                                                                                 2
       NRDW = 0
       DO 1084 I=1,NTR
       IF(ABS(TEM(I)).GT.1.UE-6) NROW=1
 1084 CONTINUE
       IF(NROW.EQ.1.AND.NHOR.EQ.1) PRINT 1083
 1083 FORMAT (52H***ERROR SUM OF ELEMENTS OF T ROW GREATER 1.UE-6)
C REDUCE T MATRIX BY B. SENSORS THAT ARE KAPUT. R IS REDUCED T MATRIX
       IF(KAPUT.EQ.0) GO TO 3162
READ 3160, (KAP(I), I=1, KAPUT)
 316 FORMAT (1615)
PRINT 3170
       PRINT 3160, (KAP(I), I=1, KAPUT)
 3170 FORMAT (36HB. SENSORS CRAPPED OUT ARE AS FOLLOWS/)
 3162 CONTINUE
      N=D
       DO 3180 I=1,NTR
       IF(KAPUT.EQ.D) GO TO 3200
       NNKAP=0
       DO 3190 L=1.KAPUT
       IF(KAP(L).EQ.I)NNKAP=1
 3190 CONTINUE
       IF(NNKAP.EQ.1) GO TO 3180
 3230 N=N+1
 DO 3210 J=1,NTC
3210 R(N,J)=T(I,J)
3180 CONTINUE
      NR = N
```

```
WRITE (4) (KAP(I), I=1, KAPUI) _____
      DO 3191 I=1.NTR
 3191 WRITE (4) (T(I,J),J=1,NTC)
      END FILE 4
C_CALCULATE_M=EM=R(TRANSPOSE)*R______
      DO 1066 I=1,NTC
      DO 1966 J=1.NTC
      EM(\bar{I},J)=0.
      DU 1066 K=1.NR
1066 \text{ EM}(\bar{1}, J) = \text{EM}(\bar{1}, J) + R(K, I) + R(K, J)
      DO 6210 I=1.NTC
 6210 WRITE (4) (EM(I,J),J=1,NTC)
      END FILE 4
C ONLY NR OF THE NTC E.VALUES WILL BE NON ZERD
      CALL TIME (9HSTART EIG)
      CALL EIGENIEM, B, NTC, VALU, NR, SRNORM, LDIM)
      CALL TIME (7HEND EIG)
      PRINT 6070, SRNORM
 6070 FORMAT (1X,7HSRNORM=E30.14)
C MOVE E. VECTORS FROM COLUMNS OF EM TO COLUMNS OF V
      DO 6230 I=1.NTC
      DO 6200 J=1.NR
 6290 V(I,J) = EM(I,J)
C READ EM BACK IN FROM TAPE4 .STEP THROUGH T FIRST
      REWIND 4
      READ (4) (KAP(I), I=1, KAPUT)
      DO 6220 I=1.NTR
 6220 READ (4) EM(I,1)
READ (4) EDF
      IF (EOF,4) 6230,6240
 6240 PRINT 6250
 6250 FORMAT (19HMISS T EOF)
      CALL EXIT
 6230 CONTINUE
      DO 6032 I=1.NTC
 6032 READ (4) (EM(1,J),J=1,NTC)
READ (4) EDE
      IF (EDF,4) 6033,6006
 6006 PRINT_6007
 6007 FORMAT (1x20HCANNOT FIND EOF ON M)
CALL EXIT
 6033 CONTINUE
      IF(NVCHEK.NE.1) GO TO 6390
      CALL VCHEK(LDIM, V, VALU, W1, W2, NTC, NR, EM)
6334 CONTINUE
      IF(NHARM.NE.1) GO TO 6400
C FOURIER ANALYSIS OF G*V. RELOAD GANGING MATRIX G INTO GG.(G=1)
      CALL TIME (9HSTART HAR)
      DO 6313 I=1.NGR
      DO 6310 J=1,NGC
      IF(I.EQ.J) GO TO 632)
      GG(I,J)=0.
      GO TO 6310
 6320 GG(I,J)=1.
 6310 CONTINUE
      DO 6330 K=1,NTC
      DO 6340 I = 1.NGR
      TEM(I)=U.
      DO 6340 J=1,NGC
 6340 TEM(I)=TEM(I)+GG(I,J)*V(J,K)
      CALL HAR (TEM, W2, NH)
```

```
NGR2 = NGR/2
       NGR1 = NGR/2 + 1
       AMP(1) = W2(1)
       AMP(NGRI)=W2(NGRI)
       DO 6350 L=2.NGR2
       M=NGR2+L
 6350 AMP(L)=SQRT((W2(L))**2+(W2(M))**2)
       DU 6081 MM=1.4
       AMPMX(MM) = AMP(1)
       IAMP(MM) = 0
       DO 6080 L=2,NGR1
IF(AMP(L).LT.AMPMX(MM)) GO TO 6080
       AMPMX(MM) = AMP(L)
       IAMP(MM)=L-1
 6080 CONTINUE
       IM=IAMP(MM)+1
       AMP(IM) = 0.
 6981 CONTINUE
 PRINT 6082, (AMPMX(I), I=1,4), (IAMP(I), I=1,4), VALU(K), K
6082 FORMAT (1X4(1XE12.5), 15X, 4(2XI3), 5XE12.6, 5XI3)
 6330 CONTINUE
       CALL TIME (7HEND HAR)
 6430 CONTINUE
C GENERATE Q MATRIX.NQS.NQL ARE SUM LIMITS AT SMALL.LARGE E.VALUES RESP.
C E.VALUES = J ARE EXCLUDED INTC-NRJ.Q/6 IS GENERATED.SYMMETRY GIVES REM.
C READ IN T MATRIX IN PLACE OF GG
       REWIND 4
       READ (4) (KAP(I), I=1, KAPUT)
       DO 6087 I=1.NIR
 6087 READ (4) (T(I,J), J=1,NTC)
       READ (4) EOF
       IF(EDF,4) 6088,6089
 6089 NFLAG=8
       PRINT 3078, NFLAG
       CALL EXIT
 6088 CONTINUE
C. STORE NOS OF OPERATING B. SENSORS IN INDEXX.
       N=0
       DO 6095 I=1,NTR
       IF(KAPUT.EQ.D) GO TO 6096
       NNKAP = 0
       DO 6097 L=1,KAPUT
       IF(KAP(L).EQ.I) NNKAP=1
 6097 CONTINUE
       IF(NNKAP.EQ.1) GO TO 6095
 6096 N=N+1
       INDEXX(N) = I
 6095 CONTINUE
       CALL TIME (7HSTART Q)
C NQ(I) MUST RUN FROM LARGEST TO SMALLEST NUMBER .Q/6 WRITTEN OVER T.
       READ 3160, (NQ(I), I=1, NNNQ)
 PRINT 641), (NO(1), I=1, NNNO)
6410 FORMAT (76HQ MATRICES OBTAINED FOR DELETION OF FOLLOWING NUMBERS O
      1F SMALL E. VECTORS ****/, 1x1615)
       REWIND 4
       DO 6500 I=1, NNNQ
 6500 NQ(NNNQ+2-1)=NR-NQ(NNNQ+1-1)
       NQ(1)=0
 3077 FORMAT (4HNTC=,13,5X3HNR=,13,5X3HNB=,13,5X5HNNNQ=,13)
       DO 6094 M=1,NTC
       DO 6510 IJ=1.NB
```

111	
00 6392 J=1 VVJM(J)=0. 00 6094 II= NOS=NO(II+1	
0.000000000000000000000000000000000000	
ALL TIME (SHEND O BACK FROM I SWIND 4 STAND SIND SIND SIND SINT 3078 KK	
53.0 ROLD 50 RANTINE 520 CONTINUE DO 540 M=1,NTC READ (4) (Q(I,M),I=1,NR) IF (M,EQ,NTC) 60 TO 540 NNNQI=NNNQ-I 51.0 READ (4) (TEM(I),I=1,NR)	_ 25_
EAD IN B. EAD E FORMAT	
0 611 1=1 1=INDEX(1) S(1)=TEM(1) 0 TO 680 ONTINUE	
HEN BS(1)= 11,2 H(1)= 3 H(2)= 1 H(2)= 1 H(2)= 1 H(1)= 3	
I=INDEXX(I) S(I)=TEM(II) ONTINUE ONTINUE F(KK.EQ.1.AND.NHOR.EQ.1) GO IO 820	

820 PRINT 825, KAPUT 60 TO 829 830 PRINT 824, KAPUT 822 FORMAT (43HHORIZONTAL PLANE.NUMBER OF B.SENSORS KAPUT=, 13//) 824 FORMAT (41HVERTICAL PLANE.NUMBER OF B.SENSORS KAPUT=, 13//) 829 CONTINUE 829 CONTINUE
22 FORMAT (43HHORIZONTAL PLAN 24 FORMAT (41HVERTICAL PLAN 29 CONTINUE DO 813 I=1•NH
Q(I)=0. 0 810 J=1,N Q(I)=HQ(I)+
*NR-NQ(KK+1) RINT 460,N,NR ORMAT (1X13,6HOF T
PRINT 5.00 (HO(I) 1 1 1 F FORMAT (1X10(FIC.7)) HOTOT=0.
0 200 I=1,NH OIDI=HOIDI+AE
PRINT 201•HGTOT 201 FORMAT (29HTOTAL MAGNET IF(ITEST.NE.1) GO TO 22
N RESIDUAL BEAM ERROR U 90 I=1,NB
BE(I)=0. DO 90 J=1,NH BE(I)=BE(I)+T(I.1)*(HC.)
MINE MAX, RMS, RMSMAX RRECTION.
IF(KK.NE.1) GO TO 850 CALL NUMBER (BS.BSMAX.BSRMS.BSMRMS.NR)
CALL NUMBER (B PRINT 440
RINI 441 ORMAT (4 ORMAT (1
PRINT 235 FORMAT (15HVECTORS OMITI 16HBMAX ROOT MEAN S,4X,14
KINI 24%, BSMAX, BSRMS RINT 245, N, BEMAX, BER ORMAI (4X, 3(10XE10, 3
45 FORMAT (1XI3,4(10XE10.3)///) REWIND 4 TE //TEST FO 3 AND 159X FO 33 CO TO 5
GO TO 220 860 CONTINUE
IN SYNCH REEWIND 3
6590 I=1,NB AD (3,3123) MN,IPOS,KK (NHOR,EQ,1) GO TO 660
GO TO 6593
EAD(3,31) ONTINUE

```
C NO. SPY STATIONS = NB , NO. ACCEL. DISP. STILL NH.
      DO 6610 I=1,NB
 661U ŠŸ(Ĭ,Ī)=J.
      SY(1,2)=SY(1,2)-1.
      DO 6611 J=4.NHS
      I = J - 2
 6611 SY(I,J) = SY(I,J) - 1.
      DO 6620 J=1,NHS
DO 6620 J=1,NB
      DO 6620 NN=1.5
      IF(I+NN*NBS-NB) 6630,6630,6640
 6630 SY(I+NN*NBS,J+NN*NHS)=SY(I,J)
      GD TO 662)
 6640 SY(I+NN*NBS-NB,J+NN*NHS)=SY(I.J)
 6620 CONTINUE
      DO 6650 I=1,NB
      BSP(1)=4.
 DO 6650 J=1,NH
6650 BSP(I)=BSP(I)+SY(I,J)*(H(J)+HQ(J))
      PRINT_6660
 6660 FORMAT (76HRELATIVE POSITION OF BEAM AT SPY STATIONS AFTER CORRECT
     110N OF QUAD POSITIONS/)
      PRINT 441, (BSP(I), I=1, NB)
  220 CONTINUE
      IE(NHOR NE 1) GO TO 87)
      NHOR=0
      IF(NVERT.EQ.1) GO TO 3020
  870 CONTINUE
      RETURN
      END
      SUBROUTINE NUMBER (CI, CMAX, CRMS, CMRMS, NB)
      DIMENSION CI(223)
      COMMON/F203/ INDEXX(223),C(224),VC(224)
      DO 50 I=1.NB
   50 C(I)=CI(Ī)
      IMAX=1
      CMAX=ABS(C(1))
      DO 30 I=2,NB
IF (ABS(C(I)).GT.CMAX) GO TO 20
      GO TO 30
   2 CMAX=ABS(C(I))
      I = XAMI
   30 CONTINUE
      CMS=3.
      DO 40 I = 1.NB
   4) CMS=CMS+C(I)**2/NB
      CRMS=SQRT(CMS)
      C(NB+1)=C(1)
      C(NB+2)=C(2)
      C = II
      DO 60 I=1.NB
      IF(ABS(C(1+2)).LE.ABS(C(1+1)).AND.ABS(C(1+1)).GT.ABS(C(1))) GO TO
     161
      GO TO 60
   61 II=II+1
      VC(II)=ABS(C(I+1))
   60 CONTINUE
  140 FORMAT (1X5(10XE9.2))
      CMMS=0.
      DO 100 I=1, II
  100 CMMS=CMMS+VC(I)**2/II
```

```
CMRMS=SQRT(CMMS)
     RETURN
     END
     SUBROUTINE TIME(WORD)
     CALL SECOND(T)
     PRINT 16,T, WORD
 10 FORMAT(4H0***F10.4,5X,A10)
     RETURN
     END.
     SUBROUTINE EIGEN (A, B, NSUB, VALU, MSUB, SRNORM, NMAX)
EIGENVALUES AND EIGENVECTORS OF A REAL SYMMETRIC MATRIX
SUB EIGEN RETURNS VECTORS IN COLUMNS OF EM. EIGENVALUES RETURN IN VALUE
     DIMENSION A(NMAX, NSUB), B(NMAX, NSUB), VALU(MSUB)
                     DIAG(223), SUPERD(223), WVEC(223), PVEC(223), QVEC(223), VALL(223), Q(223), U(223), INDEX(223), EACTOR(223), V(223), T(223,3)
     DIMENSION
     COMMON/F202/ DIAG, SUPERD, WVEC, PVEC COMMON/F203/ INDEX, T
     EQUIVALENCE (WVEC, VALL,
                                    FACTOR, U), (PVEC, QVEC, Q, V), (11, T1), (TEMP, TQ), (SUM, MATCH), (1, P),
                    (DIV, SCALAR, TAU), (ANORM2, ANORM, SUPERD(223)),
                    (VŤEMP, VNORM2, VNORM, INDEX (223))
     DATA (E1=2.0E-14)
     HOUSEHOLDER SIMILARITY TRANSFORMATION TO CO-DIAGONAL FORM
     N=NSUB
     M=MSUB
     IF (M) 50, 50, 10
GENERATE IDENTITY MATRIX
 10 DO 40 I=2.N
     DO 40 J=2,N
     B(J,I)=0.0
IE (I-J) 40, 25
 25 B(J,I)=1.0
                                                                                                       ·· 60-
                                                                                                       \infty
 40 CONTINUE
 50 DO 200 I=1.N
     REDUCE COLUMN OF MATRIX
     I1=I+1
     12 = 11 + 1
     IF(12.GT.N) GD TD 163
     SUM=0.0
 DO 70 J=12,N
70 SUM=SUM+A(J,I)**2
     IF (SUM) 75,160,75
 75 J = I1
     TEMP=A(J,I)
     SUM=SQRTF(SUM+ TEMP
                              **2)
    A(J,I) = -SIGNF(SUM, TEMP
WVEC(J) = SQRTE( 1.D+A
                            1.D+ABSEL TEMP
                                                 1/SUM)
     DIV=SIGNF(
                      WVEC(J )*SUM, TEMP )
     DO 85 J=12,N
 85 WVEC(J)=A(J,I)/DIV
     SCALAR=0.0
    DO 95 J=11,N
     PVEC(J) =0.0
 00 00 K=11'N
DO 00 K=11'N
     SCALAR=SCALAR+PVEC(J) +WVEC(J)
 95 CONTINUE
     SCALAR=SCALAR/2.0
     DO 125 J=I1.N
```

```
QVEC(J) = PVEC(J) - SCALAR * WVEC(J)
       DO 120 K=I1.J
       A(K,J)=A(K,J)-(WVEC(K)*QVEC(J)+WVEC(J)*QVEC(K))
       A(J,K)=A(K,J)
  120 CONTINUE
       IF (M) 160, 160, 130
SAVE ROTATION FOR LATER APPLICATION TO CO-DIAGONAL VECTORS
  130 DO 150 K=2.N
   TEMP=0.0
       DO 140 J=I1.N
  140 TEMP=TEMP+WVEC(J)*B(J.K)
       DO 150 J=11.N
       B(J,K)=B(J,K)-WVEC(J)*TEMP
  150 CONTINUE
       MOVE CO-DIAGONAL FORM ELEMENTS FOR ITERATIVE PROCEDURE
  160 J = I
       DIAG(I) = A(J,I)
       SUPERD(I) = A(J+1.I)
  200 CONTINUE
       GIVENS EIGENVALUE ITERATION FROM STURM CHAIN OF CO-DIAGONAL MINORS
       N=XABSF(N)
       M=XABSF(M)
C.
       CALCULATE NORM OF MATRIX AND INITIALIZE EIGENVALUE BOUNDS
       ANORM2=DIAG(1) **2
       DO 230 L=2.N
       Q(L-1)=SUPERD(L-1)**2
       \overline{ANORM2} = \overline{DIAG(L)} * *\overline{2} + Q(\overline{L} - 1) + Q(L - 1) + ANORM2
  230 CONTINUE
       ANORM=SQRTF(ANORM2)
       DO 240 L=1.M
       VALU(L) = ANORM
       VALL(L) = - ANORM
  24u CONTINUE
       EPS1=ANORM*E1
       IF (EPS1) 250, 1000
  250 DO 570 L=1,M
       CHOOSE NEW TRIAL VALUE WHILE TESTING BOUNDS FOR CONVERGENCE
  260 TAU=(VALU(L)+VALL(L))/2.0
IF (2.0*(TAU-VALL(L))-EPS1) 570, 570, 270
       DETERMINE SIGNS OF PRINCIPAL MINORS
  270 MATCH=0
       T2=0.0
      T1=1.0
D0 450 L1=1,N
P=DIAG(L1)-TAU
       IF (T2) 330, 300
  300 T1=SIGNF(1.0.T1)
  330 IF (T1) 400, 370
  370 TD=-SIGNE(1:0.T2)
       T2=0.0
  400 <u>IP</u> (Q(L1-1)) 410
400 <u>ID</u>=P-Q(L1-1)*T2/†1
       T2=1.0
       COUNT AGREEMENTS IN SIGN (ZERO CONSIDERED POSITIVE)
  410 IF (TD) 440, 420, 430
  420 T2=T1
       IF (I2) 440, 430, 430
  430 MATCH=MATCH+1
  440 T1=T0
  450 CONTINUE
      ESTABLISH TIGHTER BOUNDS ON EIGENVALUES
```

```
DO 530 L1=L.M
IF (L1-MATCH) 500, 500, 470
470 IF (VALU(L1)-TAU) 260, 260, 480
480 VALU(L1)=TAU
     GO TO 535
500 VALL(L1)=TAU
530 CONTINUE
     GO TO 26
570 CONTINUE
     EIGENVECTORS OF CO-DIAGONAL SYMMETRIC MATRIX--INVERSE ITERATION
     M=MSUB
     DO 970 I=1,M
     CHECK FOR REPEATED VALUE
     IF(I.EQ.1) GO TO 725
720 IF(VALU(I-1)-VALU(I)-(1.0E4)*EPS1) 730,725,725
    | | = - |
| | = | | + 1
725
731
     TRIANGULARIZE CO-DIAGONAL FORM AFTER EIGENVALUE SUBTRACTION
     DO 760 L=1,N
     V(L) = EPS1
     I(L,2)=DIAG(L)-VALU(I)
     IF (L-N) 740, 735
735 T(L,3)=(.)
     GO TO 760
740 T(L,3)=SUPERD(L)
     IF (T(L,3)) 750, 745
745 T(L,3)=EPS1
750 T(L+1,1)=T(L,3)
765 CONTINUE
     DO 820 J=1.N
     T(J,1)=T(J,2)
     T(J,2) = T(J,3)

T(J,3) = 0.0
     VTEMP=ABSF(T(J,1))
     IF (J-N) 785, 770
770 IF (VTEMP) 820, 780
785 Î(J.1)=EPS1
     GO TO 820
785 INDEX(J)=
     IF (ABSF(T(J+1,1))-VTEMP) 810, 810, 790
790 INDEX(J)=1
     DO 800 K=1,3
    VTEMP=T(J,K)
T(J,K)=T(J+1,K)
     T(J+1.K)=VTEMP
800 CONTINUE
810 VTEMP =T(J+1,1)/T(J,1)
     FACTOR(J)=VTEMP
    T(J+1,2)=T(J+1,2)- VIEMP *T(J,2)
T(J+1,3)=T(J+1,3)- VTEMP *T(J,3)
820 CONTINUE
     ITER=1
    IF (II) 920, 860
     BACK SUBSTITUTE TO OBTAIN EIGENVECTOR
860 DO 870 L1=1,N
    L=N+1-L1
    V(L) = V(L) - T(L, 2) + V(L+1) - T(L, 3) + V(L+2) / T(L, 1)
870 CONTINUE
    GO TO (875,923), ITER
     PERFORM SECOND ITERATION
875_ITER=2_
```

```
88J DO 91J L≡2.N
      IF (INDEX(L-1))896.9 ()
  890 VTEMP=V(L-1)
      V(L-1)=V(L)
      VILIEVIEMP
  930 V(L)=V(L)-FACTOR(L-1)*V(L-1)
  915 CONTINUE
      GO TO 860
      ORTHOGONALIZE VECTOR TO DIHERS ASSOCIATED WITH REPEATED VALUE.....
  920 IF(I1.EQ.D) GO TO 945
      DO 940 L1=1.11
      K=I-II
      VTEMP=0.0
      DO 930 J=1.N
  930 VTEMP=VTEMP+A(J,K)*V(J)
      DO 940 J=1.N
  940 V(J)=V(J)=Å(J,K)*VTEMP
GQ TQ (883,945), ITER
      NORMALIZE VECTOR
  945 VNORM2=0.0
      DO 950 L=1.N
  950 VNORM2=VNORM2+V( L )**2
       VNORM=SCRTF(VNORM2)
  DO 960 J=1.N
960 A(J,I)=V( J )/VNORM
  970 CONTINUE
C
       ROTATION OF CO-DIAGONAL VECTORS INTO MATRIX EIGENVECTORS
      N=NSUB
       DO 990 I=1.M
       DO 980 K=2.N
      U(K)=0.0
       DO 980 J=2.N
  980 U(K)=U(K)+B(J,K)*A(J,I)
       DO 990 J=2,N
  990 A(J,I)=U(J)
 1900 SRNORM=ANORM
       RETURN
       END
       SUBROUTINE VCHEK(IRD, V, R, TEM, CC, NI, III, A)
DIMENSION V(223, 223), A(223, 223), R(223), CC(223), TEM(223)
       M = NI
       DO 270 K=1, III
DO 271 I=1, M
       SUM=0.
DO 272 J=1.M
       SUM=SUM+A(I,J)*V(J,K)
  272 CONTINUE
       TEM(I)=SUM
  271 CONTINUE
       DO 273 I=1.III
       SUM=②•
       DD 274 J=1.M
       SUM=SUM+TEM(J) *V(J,I)
  274 CONTINUE
       CC(I)=SUM
  273 CONTINUE
       IL=K-1
       IF(K.EQ.1) IL=2
       00 700 11=1,111
       IF(II.EQ.K) GO TO 700
       IFIABS(CC(III)) GT. CC(IL)) IL=II
```

```
700 CONTINUE
     XIL=.0000000001
     ÎF(R(K).ĞT.9) XIL=XIL+R(K)*.00000002
IF(ABS(CC(IL)) .LT.XIL.AND.ABS(R(K)-CC(K)).LT.XIL) GO TO 709
     PRINT 705 . K.R.(K).CC(K).IL.XIL.CC(IL)
 705 FORMAT(1H) 13,2E25.14,17,2E25.14,7H ***** )
GO TO 712
759 PRINT 710 , K,R(K),CC(K),IL,XIL,CC(IL)
710 FORMAT(1H0 13,2E25.14,I7,2E25.14)
 712 CONTINUE
 270 CONTINUE
 280 RETURN
     END
     SUBROUTINE HAR(V, W, MIN)
     COMMON/F203/ TBL(223),A(112),B(112),C(112),D(112),NC
     DOUBLE PRECISION TBL
DIMENSION V(1), W(1)
     CALL HASTBL(MIN)
     N=NC/2
     IMAX=N+1
     \Delta(1) = V(1)
     B(1)=0.0
     DO 5 I=2, IMAX
     L=NC+2-I
     \overline{A(I)} = \overline{V(I)} + V(L)
     B(\bar{I}) = V(\bar{I}) - V(L)
5
     CONTINUE
     A(IMAX) = V(IMAX)
     CALL HARSUM
     F=1.0/FLOAT(N)
DO 9 I=1,IMAX
     W(I)=C(I)*F
      ÏF (I GÉ. IMAX) GO TO 9
8
     CONTINUE
                                                                                                 2
     K = N + I
     W(K)=D(I)*F
9
     CONTINUE
     W(1) = 0.5 * W(1)
     W(IMAX)=0.5*W(IMAX)
     RETURN
     FND
      SUBROUTINE HASTBL(MIN)
     COMMON/F203/ TBL(223),A(112),B(112),C(112),D(112),NC
     DOUBLE PRECISION TBL
DOUBLE PRECISION PI, FNC, SAVE, FI, DCT, DST, DB
     EQUIVALENCE (PI,PO)
     DIMENSION PO(2)
      DATA PO / 1721 6229 7732 5042 0550 B, 1641 6043 2304 6146 1213 B /
      IE (MIN .EQ. NC) RETURN
     FNC=0.0DC
     FI=0.0DU
     NC=MIN
     ENC=FLOAT(NC)
      DB=PI/FNC
      IF (MOD(NC,2) .NE. D) GO TO 99
      IF (NC.LE.222) GO TO 2
     CONTINUE
      PRINT 1000, NC
1000 FORMAT ( 14H0 ILLEGAL N.
                                      ,120 )
     STOP
     CONTINUE
```

```
N=NC/2
       N02=N/2
       TBL(1)=1.000
       TBL(N+1)=0.00°
       TBL(NC+1)=-1.000
       IEO=2-MOD(N.2)
       DO 9 I=IEO, NQ2, IEO
       FI=FLOAT(I)
       SAVE=EI *DB
       DCT=DCOS(SAVE)
DST=DSIN(SAVE)
       TBL(I+1)=DCT
       K = N - I
       TBL(K+1)=DST
       K = K + N
       TBL(K+1) = -DCT
       K = N + I
       TBL(K+1) = -DST
 9
       CONTINUE
       RETURN
       END
       SUBROUTINE HARSUM COMMON/F2/3/_TBL(223),A(112),B(112),C(112),D(112),NC
       DOUBLE PRECISION TBL
       DOUBLE PRECISION AJ, BJ, CI, DI
       MR(K) = MINO((MOD(K, NX4)), NX4-(MOD(K, NX4)))
       AJ=0.000
       BJ=0.000
       NX3 = (NC * 3)/2
       NX4=NC#2
IMAX=NC/2+1
       IJA=0
       0091=1.IMAX
       CI =0.000
       DI=0.000
       I J = 🕽
       \tilde{O}\tilde{O} \tilde{B} J=1.IMAX
       IJC=MR(IJ)
       IJS=MR(IJ+NX3)
       AJ=DBLE(A(J))
       BJ=DBLE(B(J)
       CI=CI+AJ*TBL(IJC+1)
       DI=DI+BJ*TBL(IJS+1)
       ALI+LI=LI
       CONTINUE
       C(I)=SNGL(CI)
       D(I) = SNGL(DI)
       IJA=1JA+2
       CONTINUE
       RETURN
       END
       BLOCK DATA
       COMMON/F233/ TBL(223),A(112),B(112),C(112),D(112),NC
       DOUBLE PRECISION TBL
       DATA NC / 0 /
       END
EOF
```

TM-200 0400

Appendix 3 Harmonic Response of Main Ring

The harmonic response of the Main Ring is obtained by the computer program HRESPON which is listed below. Starting from the SYNCH output tape HRESPON sets up the T matrix of Eqn. (2) by the same method used in OTRIM with the ganging matrix G=1. Then a set of beam element displacements is generated by

$$H(K) = \sin (0.001 \times I \times EE(K) + \phi(J)) \tag{A1}$$

with
$$\phi(J) = 2\pi (J-1) / NFI$$
 (A2)

where I = harmonic number

- ϕ (J) is the phase difference which may take NFI equally spaced values on the interval 0 2π as the index J is incremented.

For each harmonic I, HRESPON hunts on J to determine the phase $\phi(J)$ at which the maximum closed orbit deviation occurs. It also hunts on J to determine the phase at which the r.m.s. orbit deviation is a maximum. The output lists, for each harmonic,

I = harmonic number

NM = beam element where max. orbit deviation occurred

BMMAX = max. orbit deviation

PHM = phase $\phi(J)$ for max. orbit deviation

NRM = beam element where max. orbit deviation occurred for max. r.m.s. orbit deviation case.

BRMMAX = max. r.m.s. orbit deviation

PHRM = phase ϕ (J) for max. r.m.s. orbit deviation

The program requires only 1 data card (1615) which specifies the variables -

NHOR = 0 skip horizontal plane

= 1 run horizontal plane

 $NVERT = \theta$ skip vertical plane

= 1 run vertical plane

NHAR - highest harmonic to be run (150 in listing below)

NFI - phase increments on interval 0 - 2π (10 in listing below)

In Figure 15 and Figure 16 we have plotted the Main Ring harmonic response for the horizontal and vertical planes. The curves have the same general form as that obtained by Laslett 8 . The positions of the maxima are in good agreement with the expected positions as given by $|6\text{m}\pm\nu_0|$ where m is an integer and $\nu_0=20$ is the integer closest to the ν value. The harmonic response of possible surveying schemes for the Main Ring are typically peaked towards low harmonics 8 due to short range correlations. Thus, although Figures 15 and 16 have large peaks at high harmonics, we would expect that the residual harmonics will peak at the integer (20) nearest the ν value when the harmonic response of the survey system is included.

```
HRESPON LISTING
```

```
PLAN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            4
                                                                                                                                                                                                                                                                                                                                                           ORBIT.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         HARMONIC RESPONSE IN HORIZONTAL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      IN VERTICAL
                                                                                                                                                                                                                                                                                                                         3)
11C RESPONSE OF THE CLOSED
(22, 222), TEM(222), H(222)
, IB(205)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  READ (3,312.) MN, IPOS, KK, EL(I), SY(I, J), BETY5, BETX7, BETY7
FORMAT (A5,213,5F14.8)
READ (3,312.) MN, IPOS, KK, EEL, BETX5, BETY5, BETY7
KEAD (3,312.) EUF
IF(EOF, 3) 313.,313.
PRINT 3.4.
PRINT 3.4.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  DU 3.95 J=1,36
DO 3.95 I=1,NB
IF (NHOR:EQ.1) GO TO 31 CEL(I), BETX5, SY(I, J), BETX7, BETY7
GO TO 3.95
READ (3;3120) MN, IPOS, KK.FL(I), CVIT IN COLUMN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      HARMONIC RESPONSE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               ANYTHING)
                                                                                                                                                                                                                                            PRUGRAM HRESPON(INPUT, DUTPUT, TAPE3)

C PROGRAM HRESPON(INPUT, DUTPUT, TAPE3)

DIMENSION ELETERINES THE HARMONIC RE
DIMENSION ELETERINES THE HARMONIC RE
TPLE 2351853

TPLE 225

INH = 225

NB = 215

NB = 21
     BINGHAM
CM222 TAPES. READ SYNCH
APES)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    57u0, (SY(I, 2), I=2, NB)
G3.60.2, CM442 TAPES REWIND(1APES)
REWIND(1APES)
MAP(PART)
RUN(G,,,eROUT)
*CXIT*
*FIN*
*FIN*
*FIN*
*FIN*
*FIN*
*FONTE OUTPUT,253.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         0000
2000
2000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           3.3
                                                                                                                                                                                                                                                                                                                                                      ں
```

```
dSIC
357
                                   ຕ່ວໄພ
ລ4ເບ
ຕ
                                      EL(I-1)-1,2192
                                      672
```

```
MAX.
EL(4)=EL(3)--.e42105

EL(3)=SM+2-384245

EL(3)=SM+2-384245

EL(3)=SM+2-384245

EL(3)=SM+2-384245

EL(3)=SM+2-384245

EL(3)=SM+2-31=6283-1853*ELDAT(J)/6.+EL(I)

EL(1)=1.37

EL(1)=1.84

EL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     INCREST. EQ. 1) GO TO 3.220

CONTINUE

RETURN

END

SUBROUTINE NUMBER(C, CMAX, ICMAX, CRMS, NB)

ICMAX=1

CMAX=1

CMAX=1

CMAX=1

CMAX=1

CMAX=1

CMAX=1

CMAX=1

CMAX=1

CMAX=1

CONTINUE

CMAX=1

CMS=CMS+C(I))

CCMS=CMS+C(I)

CCMS=CMS+CMS

CCMS=CMS+CMS

CCMS=CMS+CMS

CCMS=CMS+CMS

CCMS=CMS+CMS

CCMS

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               ١Ń
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               4004
9004
9000
9000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    37,
                                                                                                                                                                                                                                                                                                                                                                                     6733
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               4.15)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          40.1U
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 4.20
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  4030
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                ω
...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  EOR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         E OF
```


stations, accelerator component sequence used in superperiod of displace ments 3/20 beam

F16.2 Flow diagram for program OTRIM.

